Directional adversarial training for cost sensitive deep learning classification applications
نویسندگان
چکیده
منابع مشابه
Adversarial Cost-Sensitive Classification
In many classification settings, mistakes incur different application-dependent penalties based on the predicted and actual class labels. Costsensitive classifiers minimizing these penalties are needed. We propose a robust minimax approach for producing classifiers that directly minimize the cost of mistakes as a convex optimization problem. This is in contrast to previous methods that minimize...
متن کاملCost-Aware Pre-Training for Multiclass Cost-Sensitive Deep Learning
Deep learning has been one of the most prominent machine learning techniques nowadays, being the state-of-the-art on a broad range of applications where automatic feature extraction is needed. Many such applications also demand varying costs for different types of mis-classification errors, but it is not clear whether or how such cost information can be incorporated into deep learning to improv...
متن کاملActive Learning for Cost-Sensitive Classification
i,y with features x and label y. The computation of this sensitivity value is governed by the actual online update where we compute the derivative of the change in the prediction as a function of the importance weight w for a hypothetical example with cost 0 or cost 1 and the same features. This is possible for essentially all online update rules on importance weighted examples and it correspon...
متن کاملActive Learning for Cost-Sensitive Classification
We design an active learning algorithm for cost-sensitive multiclass classification: problems where different errors have different costs. Our algorithm, COAL, makes predictions by regressing to each label’s cost and predicting the smallest. On a new example, it uses a set of regressors that perform well on past data to estimate possible costs for each label. It queries only the labels that cou...
متن کاملCost-Sensitive Deep Learning with Layer-Wise Cost Estimation
While deep neural networks have succeeded in several visual applications, such as object recognition, detection, and localization, by reaching very high classification accuracies, it is important to note that many real-world applications demand varying costs for different types of misclassification errors, thus requiring cost-sensitive classification algorithms. Current models of deep neural ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Engineering Applications of Artificial Intelligence
سال: 2020
ISSN: 0952-1976
DOI: 10.1016/j.engappai.2020.103550